1 Linear Algebra

1.1 Vector

A vector is an ordered set of numbers that can represent a point in space, direction, or
any quantity that has both magnitude and direction.

1.1.1 Inner Product

The inner product (or dot product) of two vectors u = [uy, ug, . .., u,] and v = vy, vq, . .., vy]
is defined as: .
u-v= Z U;V;.
i=1

It measures the cosine of the angle between two vectors and their lengths.

1.1.2 Norms

Norms are functions that assign a strictly positive length or size to each vector in a vector
space, except for the zero vector. Several types of norms are commonly used:

e p-norm (Generalized Norm): The p-norm of a vector v = [v1,vs,...,0,] is

defined as: .
v, = (ZI%I”) :
i=1

where p > 1. For different values of p, the p-norm takes specific forms:

— For p =1, it becomes the L1 norm (Manhattan norm):

n
vli =) luil.
i=1

— For p =2, it becomes the L2 norm (Euclidean norm):

— As p — o0, it approaches the Loo norm (Maximum norm):
[viloe = max|o].
1.1.3 Orthogonal and Orthonormal Vectors
Two vectors u and v are orthogonal if their inner product is zero:
u-v=_0.

Vectors are orthonormal if they are both orthogonal and have a unit norm (||ul| = 1).



1.1.4 Linear Independence

A set of vectors {vy,va,...,vi} is linearly independent if no vector in the set can be
written as a linear combination of the others:

cvitceve+ -4 vp =0 = ci=c=---=¢, = 0.

1.2 Matrix

A matrix is a rectangular array of numbers arranged in rows and columns. It is used to
represent linear transformations and solve systems of linear equations.

1.2.1 Transpose (A")

The transpose of a matrix A is obtained by swapping its rows and columns. If A is an
m X n matrix, its transpose A" is an n x m matrix.

1.2.2 Trace (tr(A))

The trace of a square matrix A is the sum of its diagonal elements:
i=1

1.2.3 Inverse (A™!)

The inverse of a matrix A is a matrix A~! such that:
AAT T =ATTA=1,
where [ is the identity matrix. A matrix is invertible only if it is square and has full rank.

1.2.4 Orthogonal Matrix

A matrix @) is orthogonal if its transpose is equal to its inverse:
Q'Q=0QQ" =1

Orthogonal matrices preserve lengths and angles.

1.3 Matrix Frobenius Norm

The Frobenius norm of a matrix A € R™*" is a measure of the magnitude of the
matrix elements. It is defined as the square root of the sum of the absolute squares of its
elements:

Al =

where a;; represents the element in the i-th row and j-th column of the matrix A.



2 Calculus

2.1 Chain Rule

The chain rule is used to differentiate compositions of functions. If y = f(g(z)), then the
derivative of y with respect to x is:

dy _df dg

dr dg dx’

2.2 Critical Points

Critical points of a function are points where its derivative is zero or undefined. They
are used to find local maxima, minima, or saddle points.

2.3 Taylor Series

The Taylor series of a function f(z) around a point a is given by:

(@) = fla) + f(a)(x —a) + fz_(f)(x AT

It approximates a function as a polynomial using its derivatives.

3 Probability

Probability theory deals with the analysis of random phenomena and quantifies uncer-
tainty.

3.1 Conditional Probability

The probability of an event A given that another event B has occurred is:

P(ANB)

P(AIB) = =L

where P(A N B) is the joint probability of A and B.

3.2 Independence and Conditional Independence

Two events A and B are independent if:
P(ANB) = P(A)P(B).

Conditional independence means that two events A and B are independent given a third
event C.



3.3 Expectation

The expectation (or mean) of a random variable X is defined as:
E[X]=) aP(X =),
for discrete random variables, or:

BIX) = [ afw)ds

o0

for continuous random variables.

3.4 Variance and Covariance

The variance of a random variable X measures its spread and is defined as:
Var(X) = E[(X — E[X])?].

Covariance between two random variables X and Y is:

Cov(X,Y) = E[(X — E[X))(Y — E[Y])].

3.5 Covariance Matrix

The covariance matrix generalizes the concept of variance to multiple dimensions. For a
random vector X = [X}, Xs,..., X,]T, the covariance matrix ¥ is an n x n matrix where
each element YJ;; represents the covariance between X; and X;.

COV(Xl,Xl) COV(Xl,X2> cee COV(Xl,Xn)
COV(XQ,XI) COV(XQ,XQ) cee COV(XQ,Xn)
Cov(X,, X7) Cov(X,,Xs) -+ Cov(X,,X,)

Each element of the covariance matrix ¥;; = Cov(X;, X;) is defined as:

Cov(X;, X;) = E[(X; — E[X,])(X; — E[Xj])],

Where E[X;] and E[X,] are the expected values (means) of the random variables X; and
X, respectively.

3.5.1 Example: Covariance Matrix for a 3-Dimensional Dataset

Figure 1 shows a scatter plot matrix of three variables, demonstrating the covariance
between them. Positive covariance is indicated by an upward trend, while weaker or zero
covariance shows a more scattered pattern.

Consider a random vector X = [X;, X, X3]T where we have 200 samples of three
correlated variables. The computed covariance matrix from the data is:

1.06 0.78 0.45
Y= 1078 1.01 0.32
0.45 0.32 0.98
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Figure 1: Scatter Plot Matrix for 3-Dimensional Data Showing Covariance

This covariance matrix tells us the following:

1. Diagonal Elements: - Var(X;) = 1.06, Var(X3,) = 1.01, Var(X3) = 0.98 represent
the variances of X;, X5, and X3, respectively.

2. Off-diagonal Elements: - Cov(X;, X3) = 0.78 indicates a strong positive covari-
ance between X; and X5. - Cov(Xy, X3) = 0.45 shows a moderate positive covariance
between X; and Xj. - Cov(Xas, X3) = 0.32 suggests a weaker positive covariance between
X2 and Xg.

Interpretation of the Covariance Matrix The positive values in the off-
diagonal elements indicate that as one variable increases, the other variable also tends
to increase, suggesting a positive linear relationship. The magnitude of the covariance
indicates the strength of the relationship: A higher covariance value (e.g., 0.78 between
X; and X5) implies a stronger linear relationship compared to a lower value (e.g., 0.32
between X, and X3).



