
1 Linear Algebra

1.1 Vector

A vector is an ordered set of numbers that can represent a point in space, direction, or
any quantity that has both magnitude and direction.

1.1.1 Inner Product

The inner product (or dot product) of two vectors u = [u1, u2, . . . , un] and v = [v1, v2, . . . , vn]
is defined as:

u · v =
n∑

i=1

uivi.

It measures the cosine of the angle between two vectors and their lengths.

1.1.2 Norms

Norms are functions that assign a strictly positive length or size to each vector in a vector
space, except for the zero vector. Several types of norms are commonly used:

• p-norm (Generalized Norm): The p-norm of a vector v = [v1, v2, . . . , vn] is
defined as:

∥v∥p =

(
n∑

i=1

|vi|p
) 1

p

,

where p ≥ 1. For different values of p, the p-norm takes specific forms:

– For p = 1, it becomes the L1 norm (Manhattan norm):

∥v∥1 =
n∑

i=1

|vi|.

– For p = 2, it becomes the L2 norm (Euclidean norm):

∥v∥2 =

√√√√ n∑
i=1

v2i .

– As p → ∞, it approaches the L∞ norm (Maximum norm):

∥v∥∞ = max
i

|vi|.

1.1.3 Orthogonal and Orthonormal Vectors

Two vectors u and v are orthogonal if their inner product is zero:

u · v = 0.

Vectors are orthonormal if they are both orthogonal and have a unit norm (∥u∥ = 1).
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1.1.4 Linear Independence

A set of vectors {v1,v2, . . . ,vk} is linearly independent if no vector in the set can be
written as a linear combination of the others:

c1v1 + c2v2 + · · ·+ ckvk = 0 =⇒ c1 = c2 = · · · = ck = 0.

1.2 Matrix

A matrix is a rectangular array of numbers arranged in rows and columns. It is used to
represent linear transformations and solve systems of linear equations.

1.2.1 Transpose (A⊤)

The transpose of a matrix A is obtained by swapping its rows and columns. If A is an
m× n matrix, its transpose A⊤ is an n×m matrix.

1.2.2 Trace (tr(A))

The trace of a square matrix A is the sum of its diagonal elements:

tr(A) =
n∑

i=1

Aii.

1.2.3 Inverse (A−1)

The inverse of a matrix A is a matrix A−1 such that:

AA−1 = A−1A = I,

where I is the identity matrix. A matrix is invertible only if it is square and has full rank.

1.2.4 Orthogonal Matrix

A matrix Q is orthogonal if its transpose is equal to its inverse:

Q⊤Q = QQ⊤ = I.

Orthogonal matrices preserve lengths and angles.

1.3 Matrix Frobenius Norm

The Frobenius norm of a matrix A ∈ Rm×n is a measure of the magnitude of the
matrix elements. It is defined as the square root of the sum of the absolute squares of its
elements:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij|2,

where aij represents the element in the i-th row and j-th column of the matrix A.
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2 Calculus

2.1 Chain Rule

The chain rule is used to differentiate compositions of functions. If y = f(g(x)), then the
derivative of y with respect to x is:

dy

dx
=

df

dg
· dg
dx

.

2.2 Critical Points

Critical points of a function are points where its derivative is zero or undefined. They
are used to find local maxima, minima, or saddle points.

2.3 Taylor Series

The Taylor series of a function f(x) around a point a is given by:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · · .

It approximates a function as a polynomial using its derivatives.

3 Probability

Probability theory deals with the analysis of random phenomena and quantifies uncer-
tainty.

3.1 Conditional Probability

The probability of an event A given that another event B has occurred is:

P (A|B) =
P (A ∩B)

P (B)
,

where P (A ∩B) is the joint probability of A and B.

3.2 Independence and Conditional Independence

Two events A and B are independent if:

P (A ∩B) = P (A)P (B).

Conditional independence means that two events A and B are independent given a third
event C.
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3.3 Expectation

The expectation (or mean) of a random variable X is defined as:

E[X] =
∑
x

xP (X = x),

for discrete random variables, or:

E[X] =

∫ ∞

−∞
xf(x) dx,

for continuous random variables.

3.4 Variance and Covariance

The variance of a random variable X measures its spread and is defined as:

Var(X) = E[(X − E[X])2].

Covariance between two random variables X and Y is:

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])].

3.5 Covariance Matrix

The covariance matrix generalizes the concept of variance to multiple dimensions. For a
random vector X = [X1, X2, . . . , Xn]

⊤, the covariance matrix Σ is an n×n matrix where
each element Σij represents the covariance between Xi and Xj.

Σ =


Cov(X1, X1) Cov(X1, X2) · · · Cov(X1, Xn)
Cov(X2, X1) Cov(X2, X2) · · · Cov(X2, Xn)

...
...

. . .
...

Cov(Xn, X1) Cov(Xn, X2) · · · Cov(Xn, Xn)

 .

Each element of the covariance matrix Σij = Cov(Xi, Xj) is defined as:

Cov(Xi, Xj) = E[(Xi − E[Xi])(Xj − E[Xj])],

Where E[Xi] and E[Xj] are the expected values (means) of the random variables Xi and
Xj, respectively.

3.5.1 Example: Covariance Matrix for a 3-Dimensional Dataset

Figure 1 shows a scatter plot matrix of three variables, demonstrating the covariance
between them. Positive covariance is indicated by an upward trend, while weaker or zero
covariance shows a more scattered pattern.

Consider a random vector X = [X1, X2, X3]
⊤ where we have 200 samples of three

correlated variables. The computed covariance matrix from the data is:

Σ =

1.06 0.78 0.45
0.78 1.01 0.32
0.45 0.32 0.98

 .
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Figure 1: Scatter Plot Matrix for 3-Dimensional Data Showing Covariance

This covariance matrix tells us the following:
1. Diagonal Elements: - Var(X1) = 1.06, Var(X2) = 1.01, Var(X3) = 0.98 represent

the variances of X1, X2, and X3, respectively.
2. Off-diagonal Elements: - Cov(X1, X2) = 0.78 indicates a strong positive covari-

ance between X1 and X2. - Cov(X1, X3) = 0.45 shows a moderate positive covariance
between X1 and X3. - Cov(X2, X3) = 0.32 suggests a weaker positive covariance between
X2 and X3.

Interpretation of the Covariance Matrix The positive values in the off-
diagonal elements indicate that as one variable increases, the other variable also tends
to increase, suggesting a positive linear relationship. The magnitude of the covariance
indicates the strength of the relationship: A higher covariance value (e.g., 0.78 between
X1 and X2) implies a stronger linear relationship compared to a lower value (e.g., 0.32
between X2 and X3).
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