
Discussion Week 3

September 13, 2024

1 Matrix Calculus

1.1 The Gradient

Let f : Rm×n → R be a function that takes a matrix A of size m × n and
returns a real value. The gradient of f with respect to A ∈ Rm×n is defined as
the matrix of partial derivatives:

∇Af(A) ∈ Rm×n =


∂f(A)
∂A11

∂f(A)
∂A12

· · · ∂f(A)
∂A1n

∂f(A)
∂A21

∂f(A)
∂A22

· · · ∂f(A)
∂A2n

...
...

. . .
...

∂f(A)
∂Am1

∂f(A)
∂Am2

· · · ∂f(A)
∂Amn

 .

If A is a vector x ∈ Rn, then:

∇xf(x) =
[
∂f(x)
∂x1

∂f(x)
∂x2

· · · ∂f(x)
∂xn

]⊤
.

1.2 The Hessian

Suppose f : Rn → R is a function that takes a vector in Rn and returns a real
value. The Hessian matrix, denoted as ∇2

xf(x), is the matrix of second-order
partial derivatives:

∇2
xf(x) ∈ Rn×n =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
· · · ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n

 .

The Hessian is always symmetric, i.e., ∂2f(x)
∂xi∂xj

= ∂2f(x)
∂xj∂xi

.
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1.3 Gradients and Hessians of Quadratic Forms

For a quadratic function f(x) = x⊤Ax where A ∈ Rn×n is a symmetric matrix,
the gradient and Hessian are:

∇xf(x) = 2Ax, and ∇2
xf(x) = 2A.

This can be derived as follows:

∇x(x
⊤Ax) = ∇x

 n∑
i=1

n∑
j=1

Aijxixj

 = 2Ax.

1.4 Matrix Calculus for Determinants

For a square matrix A ∈ Rn×n, the gradient of its determinant with respect to
A is:

∇A|A| = |A|A−⊤.

Similarly, for the function f(A) = log |A| (where A is a positive definite
matrix), the gradient is given by:

∇A log |A| = A−1.

1.5 Gradients and Hessians of Quadratic and Linear Func-
tions

Now let’s try to determine the gradient and Hessian matrices for a few simple
functions. It should be noted that all the gradients given here are special cases
of the gradients given in the CS229 lecture notes.

1.6 Linear Function Gradient

For x ∈ Rn, let f(x) = b⊤x for some known vector b ∈ Rn. Then:

f(x) =

n∑
i=1

bixi.

Taking the partial derivative with respect to xk:

∂f(x)

∂xk
=

∂

∂xk

n∑
i=1

bixi = bk.

Thus, the gradient of f(x) is:

∇xb
⊤x = b.

This should be compared to the analogous situation in single variable calcu-
lus, where ∂/∂x (ax) = a.
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1.7 Quadratic Function Gradient

Now consider the quadratic function f(x) = x⊤Ax for a symmetric matrix
A ∈ Rn×n. Recall that:

f(x) =

n∑
i=1

n∑
j=1

Aijxixj .

Taking the partial derivative of f(x) with respect to xk, we have:

∂f(x)

∂xk
=

∂

∂xk

n∑
i=1

n∑
j=1

Aijxixj .

Let’s separate out the terms involving xk and x2
k separately:

∂f(x)

∂xk
=

∂

∂xk

∑
i ̸=k

∑
j ̸=k

Aijxixj +
∑
i̸=k

Aikxixk +
∑
j ̸=k

Akjxkxj +Akkx
2
k

 .

Calculating each term:

∂f(x)

∂xk
=

∑
i ̸=k

Aikxi +
∑
j ̸=k

Akjxj + 2Akkxk.

Simplifying by combining symmetric terms (since A is symmetric, Aik =
Aki):

∂f(x)

∂xk
=

n∑
i=1

Aikxi +

n∑
j=1

Akjxj = 2

n∑
i=1

Akixi = 2(Ax)k.

Thus, the gradient of f(x) = x⊤Ax is:

∇xf(x) = 2Ax.

This result is analogous to the single-variable calculus result ∂/∂x (ax2) =
2ax.

1.8 Quadratic Function Hessian

Finally, let’s look at the Hessian of the quadratic function f(x) = x⊤Ax. It
should be obvious that the Hessian of a linear function b⊤x is zero. In this case:

∂2f(x)

∂xk∂xℓ
=

∂

∂xℓ

[
∂f(x)

∂xk

]
=

∂

∂xℓ

[
2

n∑
i=1

Akixi

]
= 2Akℓ.

Therefore, the Hessian is:

∇2
xf(x) = 2A.
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This should be entirely expected and is analogous to the single-variable fact
that ∂2/∂x2 (ax2) = 2a.

1.9 Summary

To recap:

• ∇xb
⊤x = b.

• ∇xx
⊤Ax = 2Ax (if A is symmetric).

• ∇2
xx

⊤Ax = 2A (if A is symmetric).

1.10 Least Squares

Let’s apply the equations we obtained in the last section to derive the least
squares equations. Suppose we are given matrices A ∈ Rm×n (for simplicity, we
assume A is full rank) and a vector b ∈ Rm such that b /∈ R(A) (the range space
of A). In this situation, we will not be able to find a vector x ∈ Rn such that
Ax = b. Instead, we want to find a vector x such that Ax is as close as possible
to b, as measured by the square of the Euclidean norm ∥Ax− b∥22.

Using the fact that ∥x∥22 = xTx, we have

∥Ax− b∥22 = (Ax− b)⊤(Ax− b).

Expanding this, we get:

∥Ax− b∥22 = x⊤A⊤Ax− 2b⊤Ax+ b⊤b.

Taking the gradient of x⊤A⊤Ax−2b⊤Ax+ b⊤b with respect to x, and using
the properties derived in the previous section, we have:

∇x

(
x⊤A⊤Ax− 2b⊤Ax+ b⊤b

)
= ∇x

(
x⊤A⊤Ax

)
−∇x

(
2b⊤Ax

)
+∇x

(
b⊤b

)
.

Calculating each term separately:
- Gradient of the first term:

∇x

(
x⊤A⊤Ax

)
= 2A⊤Ax.

- Gradient of the second term:

∇x

(
−2b⊤Ax

)
= −2A⊤b.

- Gradient of the third term: Since b⊤b is a constant with respect to x,
its gradient is zero:

∇x

(
b⊤b

)
= 0.

Setting the gradient equal to zero and solving for x:
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2A⊤Ax− 2A⊤b = 0.

Simplifying:

A⊤Ax = A⊤b.

This is known as the **normal equation**. Solving for x:

x = (A⊤A)−1A⊤b,

which is the same expression we derived in class.
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