
High level categories in ML
Based on objectives

Supervised 
Learning

Unsupervised 
Learning

Reinforcement
Learning



          Parametric vs Non-Parametric

Learn a fixed-size set of 
parameters

Learnable parameters 
depends on size of 
training data

Can throw away data 
after training

Predictions uses training 
data

Despite the name, non-parametric 
does not mean “no parameters”



Simplest Example: k-Nearest Neighbors
● On test example x, predict the most common label among the k neighbors of x
● Nearby examples have the same label

● Need to define a similarity function

● Low bias: Makes no assumption about decision boundary

● Potentially high variance: Decisions are very sensitive to training data
○ “Curse of dimensionality”



Complex Example: Kernel Methods
● Like k-NN, decision depends on “nearby” training data

● Kernel functions: (loosely) measures closeness of two points

● ɑ ‘s are parameters: one for each training data point

● How do we learn them?
○ Lec 8 covered connection between logistic regression and an algorithm for learning ɑ
○ SVMs



Kernel Trick

Use kernel functions between two data points
instead of

Computing dot product in large feature spaces

Why use kernel methods?
+ Get benefit of using large feature spaces (more expressive)
+ Avoid computation of explicitly writing out the data point in a large 

feature space
○ RBF kernels represent dot product in infinite dimensional space
○ You’ll work through this in the homework

− Inference time has a dependence on number of training datapoints



Support Vector Machines
● Max-margin classifier

○ Objective function 

incentivizes a large margin 

between the two class



SVM
● Can be derived as a special case of replacing logistic loss with hinge loss



SVM
● Can then be kernelized to take advantage of kernel trick



SVM: What are support vectors?
● Like other kernel methods, the SVM decision function can be stated as:

● However, optimizing the SVM objective leads to:
○ 𝛼 being non-zero only for support vectors: examples that lie on the decision 

boundary or within the margin and misclassified examples

○ 𝛼 being zero for examples that are correctly classified

● This means at test time, the decision depends only on a small number of support 

vectors and not the entire training set



Loss for the SVM with Soft Margin

• 𝟏
𝟐

𝒘𝑻𝒘: Regularization term that controls the margin size. Minimizing it ensures that the margin between 

the positive and negative classes is maximized

•  Cσ𝒊=𝟏
𝒏 𝝃𝒊: 𝝃𝒊 is called the slack variable that allow points to be on the wrong side of the margin or 

misclassified. This term penalizes the total amount of slack used. A larger C enforces stricter 
classification

• σ𝒊=𝟏
𝒏 𝜶𝒊 𝒚 𝒊 𝒙 𝒊 𝑻𝒘 + 𝒃  − 𝟏 + 𝝃𝒊 : This constraint forces each sample 𝑥 𝑖  to be correctly classified with 

a margin of at least 1. If a point lies within the margin or on the wrong side of the decision boundary, the 
corresponding 𝛼𝑖 becomes positive, reflecting the misclassification.

• -σ𝒊=𝟏
𝒏 𝒓𝒊𝝃𝒊: Ensures non-negativity of the slack variables (i.e., 𝝃𝒊 ≥ 0). This term ensures that all slack 

variables are zero or positive, corresponding to the fact that the misclassification penalties cannot be 
negative. 

𝐿 𝑤 = 1
2

𝑤𝑇𝑤 + 𝐶 σ𝑖=1
𝑛 𝜉𝑖  − σ𝑖=1

𝑛 𝛼𝑖 𝑦 𝑖 𝑥 𝑖 𝑇𝑤  − 1 + 𝜉𝑖 −  σ𝑖=1
𝑛 𝑟𝑖𝜉𝑖  



Regularization and Non-separable Case 

• Mapping data to a high dimensional feature 
space via ϕ increase the likelihood that the 
data is separable but not guarantee it

• There are cases in which finding a separating 
hyperplane is not exactly what we’d want to do

• Therefore, we need some trick make the SVM 
algorithm work for non-linearly separable 
datasets as well as be less sensitive to outliers 

The left figure below shows an optimal margin classifier, and when a single outlier is added in the 
upper-left region (right figure), it causes the decision boundary to make a dramatic swing, and the 
resulting classifier has a much smaller margin



● There exist alternative techniques to minimize SVM loss
○ Linear optimization libraries

● These approaches only require dot-products between the data points

○ Thus, they can use kernel functions

● Combine this with efficient prediction using kernels

 This is the big reason why SVMs and kernels are a good match!

SVM: Optimization



Quick Note:
All non-parametric approaches discussed, 
have corresponding variants for regression
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