High level categories in ML

Based on objectives




Parametric vs Non-Parametric

Learn a fixed-size set of Learnable parameters
parameters depends on size of
training data

Can throw away data Predictions uses training
after training data

Despite the name, non-parametric
does not mean “no parameters”




Simplest Example: k-Nearest Neighbors

e Ontest example x, predict the most common label among the k neighbors of x
e Nearby examples have the same label
e Needtodefine asimilarity function

e Low bias: Makes no assumption about decision boundary

e Potentially high variance: Decisions are very sensitive to training data
o “Curse of dimensionality”



Complex Example: Kernel Methods

e Like k-NN, decision depends on “nearby” training data
e Kernel functions: (loosely) measures closeness of two points
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e a'sare parameters: one for each training data point

e Howdowelearnthem?

o Lec 8 covered connection between logistic regression and an algorithm for learning a
o SVMs




Kernel Trick

Use kernel functions between two data points
instead of

Computing dot product in large feature spaces

Why use kernel methods?
+ Get benefit of using large feature spaces (more expressive)
+ Avoid computation of explicitly writing out the data point in a large

feature space
o RBF kernels represent dot product in infinite dimensional space
o You'll work through this in the homework

- Inference time has a dependence on number of training datapoints



Support Vector Machines

e Max-margin classifier
o Objective function
incentivizes a large margin
between the two class




SVM
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Can be derived as a special case of replacing logistic loss with hinge loss

predict —1 (incorrect) predict +1 (correct)

— lOgistic
m— hinge
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SVM

e Canthen be kernelized to take advantage of kernel trick
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SVM: What are support vectors?

e Like other kernel methods, the SVM decision function can be stated as:
mn
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e However, optimizing the SVM objective leads to:
o a being non-zero only for support vectors: examples that lie on the decision
boundary or within the margin and misclassified examples
o abeing zero for examples that are correctly classified
e This means at test time, the decision depends only on a small number of support

vectors and not the entire training set



Loss for the SVM with Soft Margin
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* owWiwr Regularization term that controls the margin size. Minimizing it ensures that the margin between

the positive and negative classes is maximized

« CYiqé&;:&;iscalled the slack variable that allow points to be on the wrong side of the margin or
misclassified. This term penalizes the total amount of slack used. A larger C enforces stricter
classification

o ¥ a[y®@(xWDTw + b) — 1 + &]: This constraint forces each sample x() to be correctly classified with
a margin of at least 1. If a point lies within the margin or on the wrong side of the decision boundary, the
corresponding a; becomes positive, reflecting the misclassification.

« -yt ,r1i&i: Ensures non-negativity of the slack variables (i.e., §; = 0). This term ensures that all slack
variables are zero or positive, corresponding to the fact that the misclassification penalties cannot be
negative.



Regularization and Non-separable Case

The left figure below shows an optimal margin classifier, and when a single outlier is added in the
upper-left region (rightfigure), it causes the decision boundary to make a dramatic swing, and the
resulting classifier has a much smaller margin

Mapping data to a high dimensional feature
space via ¢ increase the likelihood that the
data is separable but not guarantee it

There are cases in which finding a separating
hyperplane is not exactly what we’d want to do

Therefore, we need some trick make the SVM
algorithm work for non-linearly separable
datasets as well as be less sensitive to outliers



SVM: Optimization

e There exist alternative techniques to minimize SVM loss
o Linear optimization libraries

e These approaches only require dot-products between the data points
o Thus, they can use kernel functions

e Combine this with efficient prediction using kernels

This is the big reason why SVMs and kernels are a good match!



Quick Note:
All non-parametric approaches discussed,
have corresponding variants for regression
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