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Abstract

Cell segmentation is crucial for analyzing spatial
transcriptomics data in Multiplexed Error-Robust
Fluorescence in situ Hybridization (MERFISH)
experiments. This study addresses challenges
in segmenting cells in MERFISH images of hu-
man heart tissues, exploring limitations of ex-
isting methods like thresholding. The research
aims to enhance accuracy using machine learn-
ing algorithms such as k-means and convolutional
neural networks. Initial experiments with base-
line thresholding and mini batch k-means clus-
tering on DeepSea’s diverse phase contrast mi-
croscopy dataset show mixed results. While base-
line thresholding is less effective with fewer cells
and more background noise, mini batch k-means
struggles with noise and accurate boundary iden-
tification. Using average Intersection over Union
(IoU) scores, mini batch k-means exhibits im-
proved performance compared to baseline on the
DeepSea dataset. To overcome current limitations,
a U-Net convolutional neural network (CNN) was
developed, however, the results were worse than
anticipated. Like with thresholding and k-means,
the CNN had difficulty distinguishing between
the background noise and cell bodies. While re-
sults are less than optimal, these findings will still
contribute to developing robust cell segmentation
methods applicable across staining techniques and
tissue types in MERFISH experiments.

1. Introduction
In recent years, there has been a push to map the tran-
scriptome of human tissues to characterize coding and non-
coding transcriptional activity. Many methods to do so
have been employed, such as single-cell RNA sequenc-
ing (scRNA-seq), single-molecule Fluorescence in situ Hy-
bridization (smFISH), and Multiplexed Error-Robust Fluo-
rescence in situ Hybridization (MERFISH). My lab at UC
San Diego employs all three of these technologies to char-
acterize the human heart transcriptome, however, my focus
has been on the MERFISH technology.

Figure 1. MERFISH experiment pipeline. First, the sample is
sliced and prepped, then it is sequentially imaged. After imaging
is completed, the images are analyzed to pick out each individual
cell boundary. Then the MERFISH fluorescence data is decoded
to determine where each mRNA transcript is spatially located.

MERFISH is a spatial transcriptomics imaging method that
utilizes fluorescently labeled oligonucleotide probes that
bind to specific RNA species, imaged over multiple hy-
bridization rounds (Figure 1). Each target RNA species
is given a unique barcode of zeros and ones, and a high
resolution microscope with multiple wavelength lasers is
used to sequentially image the samples. If a fluorescence is
present during that round of imaging, a 1 is recorded for the
corresponding bit position; if no fluorescence is present, a
0 is recorded. In this way, the multiple rounds of imaging
come together to generate the barcodes of the RNA species,
allowing for the spatial localization of many genes. Cell
boundaries are determined through cell segmentation, and
the transcripts are assigned to cells. Once the genes are
spatially located, cell types can be determined.

One issue we consistently run into with our MERFISH ex-
periments is with cell segmentation. While we have multiple
methods to find the cell boundaries in images, they do so
with varying accuracy that cannot always be predicted be-
fore testing them on the data. Different tissues have different
cell densities, shapes, and sizes, which makes it difficult
to have a consistently high-performing cell segmentation



Figure 2. Sample field of view of heart experiment PolyT (left) and
DAPI (right) stainings. These images are what are used to segment
the cells.

method. Additionally, we utilize different kinds of stainings,
which can lead to less accurate cell segmentation (Figure
2). We utilize three different stainings: Poly(A)/Poly(T),
which stain the cytoplasm; DAPI, which stains the cell nu-
clei; and more recently, Lamin A, which stains the nuclear
lamina. In this paper, I will be investigating how I can uti-
lize machine learning algorithms to create a more robust
cell segmentation method that can be used on all types of
staining.

My baseline thresholding algorithm, which maps high val-
ues to 1 and low values to 0, and then selects the borders of
cells based on the binary mapping, has a low accuracy (IoU
of 0.08). K-means clustering, specifically with mini batches
to improve runtime, also had relatively low accuracy (IoU
of 0.13). This low accuracy is possible due to using mini
batches rather than the normal k-means clustering, though
it has higher IoU scores than the baseline method. Lastly, a
U-Net convolutional neural network (CNN) was developed,
which also had a low IoU score (0.12). The results look very
similar to the mini batch k-means results, where background
noise is often picked as cells in the images.

Overall, it is clear that the k-means and thresholding algo-
rithms are incapable of adapting to diverse datasets for cell
segmentation. While the CNN also had low IoU accuracy,
with a larger and more diverse dataset, I believe it is capable
of generating higher accuracy cell segmentations.

2. Related Work
2.1. Watershed Algorithm

Many methods have been proposed to segment various cell
types. One popular method is the Watershed algorithm,
which creates a topological surface from grey-scale images,
then determines the lines along the top of the ridges formed
(Bieniek & Moga, 2000). While this method works well

in theory, it underperforms when cell fluorescence signals
don’t smoothly decay from the center of the cell to the
cell boundary (which is the case for most nucleic boundary
stainings). It also has difficulty with cells that overlap in the
images.

2.2. Thresholding Algorithm

Another common method to segment cells is the threshold-
ing algorithm. Thresholding is the mapping of grey-scale
image into the binary set 0,1 where 0 is the background
and 1 is the cell (Perez & Gonzalez, 1987). The issue with
this method is that picking a threshold value can be difficult;
similar to the Watershed algorithm, different fluorescence in-
tensity from various cell-types can present issues. However,
thresholding is an important step in most cell segmentation
algorithms as it allows for clear definition of boundaries, the
images just must be preprocessed to maximize the thresh-
olding algorithm’s accuracy.

After testing the thresholding algorithm on the DeepSea
dataset, it is clear that the method is insufficient for di-
verse datasets. It often selects the background as part of the
cells, especially if there is glare in the image. However, the
method is still useful when used in combination with other
methods, such as machine learning methods.

2.3. Machine Learning Approaches – Cellpose

More recently, machine learning algorithms have been im-
plemented to segment cells. Deep neural networks have
been relatively successful, with their only major downside
being the inflexibility of the segmentation (parameters can-
not be adjusted as with aforementioned algorithms) (Rune,
2023). One such deep learning-based algorithm is Cellpose,
which my lab has utilized in the past. Cellpose generates
topological graphs, as Watershed does, through a process
of stimulated diffusion that uses manual masks (Stringer

Figure 3. Cumulus cells stained with Lamin B (a) and Lamin A
(b). The staining is indicated on each panel: DNA - DAPI; Lamin
A (LA) and Lamin B (LB); TRF2 is red. Merged image is marked
(M). Bar 10 um for all images (Pochukalina & Podgornaya, 2016)



& Pachitariu, 2021). A neural network is then trained to
predict the gradients of those topological maps. Cellpose
uses gradient tracking to route all pixels belonging to a
cell to the center of that cell, which allows each cell to be
identified. While this algorithm works well when we use
DAPI, Poly(A), and Poly(T) staining for cell segmentation,
it underperforms when we use Lamin A staining. I believe
this is due to the fact that Lamin A stains the nuclear lamina,
which would give more of a ring of fluorescence rather than
the solid fluorescence as shown in Figure 3.

After testing my CNN method, it seems that a much more
complicated neural network is necessary, one more like
Cellpose, to complete this difficult task. My CNN had dif-
ficulties handling background noise, which Cellpose does
not have difficulty with. Cellpose’s training dataset wasn’t
larger than my own, so it seems that it is likely a difference
in complexity of the network rather than just insufficient
training (however, Cellpose included some images of ran-
dom objects rather than just cells to increase the model’s
ability to handle diverse images, which is something I did
not do when training my CNN).

2.4. Machine Learning Approaches – U-Net CNN

In 2015, a group in the Computer Science Department of
the University of Freiburg implemented a CNN called the
U-Net, which consists of a decoder, a middle layer, and
an encoder, specifically for biomedical image segmenta-
tion, which is what drew me to use one myself. As shown
in Figure 4, the encoder consists of convolutional layers
with ReLU activation functions and max-pooling to reduce
spatial dimensions, the middle layer further reduces spatial
dimensions, and the decoder is responsible for upsampling
and reconstructing the segmented image (Ronneberger et al.,
2015).

After testing the method myself, it doesn’t seem to work
that well for cell segmentation. I think the U-Net model is
usually used for segmentation of electron-microscopy im-
ages, which usually have stark boundaries and are therefore
much easier to segment than images of cell stainings.

3. Dataset and Evaluation
3.1. Dataset – MERFISH Human Heart Samples

Previously, I intended to use Cellpose’s training and test
data, which utilizes DAPI staining and is open for public
use (Stringer & Pachitariu, 2021). Cellpose’s training data
includes 540 images, and their test data includes 68 images;
however, their masks are blank images and cannot be used.
Instead, I am using DeepSea’s dataset, developed by UC
Santa Cruz (Abolfazl Zargari, 2023). This dataset has 1,853
cell images along with annotated cell masks for each. In
particular, it has 444 test images and 1,409 training images,

Figure 4. Diagram of the U-Net CNN model architecture (Ron-
neberger et al., 2015). (See 4.3 Machine Learning Method 2)

which I split into a dev set (283 images for the dev set and
1,126 for the training set). While this dataset consists of
images of phase contrast microscopy, I believe that the task
of segmenting cells for these images is similar enough to
the task of segmenting cells with Lamin A staining because
phase contrast microscopy creates images with a ring border
of the cells, which is very similar to Lamin A staining.

3.2. Evaluation

DeepSea’s dataset comes with manually segmented images,
which can be used to evaluate the accuracy of my algorithms.
These masks can be compared with my model’s predictions
by using the IoU (intersection over union) score, which is
commonly used to evaluate the accuracy of image segmen-
tation tasks. IoU measures the degree of overlap between
a predicted bounding box or segment and a ground truth
bounding box or segment. Specifically, it is defined as the
intersection area divided by the union area of the two re-
gions. Typically, an IoU score of 0.5 or above is considered
acceptable, and a 0.7 or higher is considered good for image
segmentation.

4. Methods
4.1. Baseline Method

As a baseline, I used simple thresholding. First, the input
image is loaded and converted into greyscale. Next, the
contrast is enhanced with histogram equalization (Mustafa
& Kader, 2018), contrast stretched between the 2nd and
98th percentile to stretch the range of intensity values, and
then Otsu’s thresholding is applied to create a binary image
(Otsu, 1975). Once the image has been converted to binary,
the cells are selected as any region with a value of 1, and
then the selected cells are filtered for size (greater than 100



Figure 5. Original cell image (left) and correct mask (middle) from DeepSea’s test set (Abolfazl Zargari, 2023), and cells segmented by
my baseline algorithm (see 4.1 Baseline Method).

pixels) so no noise is marked as a cell. Next, the initial cell
mask is created. Since the cells have strong borders, these
initial cell masks end up selecting the center of the cells
as background. Therefore, I invert the cell mask and apply
another threshold to select only regions with high enough
area (greater than 300 pixels). This is turned into the final
binary cell mask prediction.

4.2. Machine Learning Method 1 – Mini Batch K-Means

My first attempted machine learning program to perform
cell segmentation on raw images was with k-means cluster-
ing. After loading and preprocessing the data (just changing
images from RGB to greyscale), I used sklearn’s mini batch
k-means clustering with a batch size of 800, maximum itera-
tion of 100, and 2 clusters. Mini batch k-means is a variation
of k-means that uses random subsets of the dataset to per-
form updates (Thankachan, 2023). Similar to k-means, mini
batch k-means randomly selects points (2 since 2 clusters)
to be centroids of the clusters, and calculates the distance of
all other points in the batch (also randomly chosen) to those
centroids. The data points are assigned to the cluster closest
to them. Once all the data points in the batch are assigned,

the centroids are recalculated. This process is repeated until
convergence, or until the maximum number of iterations
(100) is reached.

I had previously attempted to use sklearn’s regular k-means
clustering (which uses the whole dataset instead of subsets),
however, the runtime was far too long (almost an hour)
because of the size of my dataset of large-sized images.

4.3. Machine Learning Method 2 – Convolutional
Neural Network (CNN)

After implementing mini batch k-means, I developed and
trained a U-Net convolutional neural network (CNN) using
PyTorch. My CNN first loads in the data, and then has an
encoder, middle layer, and then decoder (a U-Net model,
which is commonly used for cell segmentation). Similar to
the architecture shown in Figure 4 (though my image sizes
were different and I had less layers), the encoder consists
of two convolutional + ReLU layers (number of output
channels is 64, kernel size of 3, padding of 1, for both),
followed by max pooling (kernel size of 2, stride of 2). The
middle layer has the same layers as the encoder, except the

Figure 6. Original cell image (left) and correct mask (middle) from DeepSea’s test set (Abolfazl Zargari, 2023), and cells segmented by
my baseline algorithm (see 4.1 Baseline Method).



Figure 7. Average IoU scores for mini batch k-means with various
batch sizes.

convolutional layers have 128 output channels. Lastly, the
decoder has the same layers, but with 64 output channels for
the convolutional layers, and instead of pooling, there is a
convolutional transpose layer with 1 output channel, kernel
size of 2, and stride of 2. After the decoder, the dimensions
of the output are adjusted to match the input size by using
PyTorch’s interpolate function.

Hyperparameters for a CNN include the number of layers,
which non-linearity to use, kernel size, padding, and output
channel size for the convolutional layers. Because of the
results shown in 5.3 Machine Learning Method 2 Results,
I decided to use padding of 1 and kernel size of 3, which is
typical for many CNNs, and I used ReLU for my non-linear
layers.

Figure 8. Average IoU scores for mini batch k-means with various
cluster sizes.

The CNN method performs worse than the mini batch k-
means algorithm because while the CNN is able to learn
a lot more features than a k-means clustering algorithm is
capable of learning, I think the amount of training data was
insufficient and there wasn’t enough diversity in my training
set. Also, including more layers like the original U-Net
model may improve the algorithm’s performance.

5. Experiments
5.1. Baseline Results

Overall, my baseline algorithm had an average IoU of 0.08,
which is extremely low. Looking closer, it seems that the
algorithm worked well for some images, but poorly for
others. For example, Figure 5 shows a good prediction
of where the cells are (IoU of 0.3427), however, Figure
6 shows an example of a poor prediction (IoU of 0.0212)
when the background is selected along with the cells.

5.2. Machine Learning Method 1 (K-Means) Results

In order to determine the best batch size for the mini batch
k-means algorithm, I tested on the dev set for batch sizes
varying from 100 to 1000. As shown in Figure 7, IoU scores
were relatively similar and plateau off after batch size of
600. Therefore, I chose to go with batch size of 800 because
it had a low runtime (12 seconds for 283 images) and a rela-
tively high IoU (0.1401029687). Adjusting the maximum
iterations did not make significant changes to the IoU values,
so I stuck with the standard of 100 max iterations. To deter-
mine the best number of clusters, I calculated the average
IoU for the dev set for various numbers of clusters (using
800 batch size and 100 max iterations), as shown in Figure
8. Since 2 clusters had the highest IoU (0.1401029687), I
used 2 clusters for the rest of my analyses.

Initial results are mixed, similar to the baseline results. On

Figure 9. Average IoU scores for CNN with various kernel sizes.



Figure 10. Original cell image (left) and correct mask (middle) from DeepSea’s test set (Abolfazl Zargari, 2023), and cells segmented by
sklearns’ mini batch k-means clustering algorithm (see 5.2 Machine Learning Method 1).

the one hand, Figure 10 shows an example good quality
result (IoU of 0.2995) for the mini batch k-means, whereas
Figure 11 shows an example of a low quality result (IoU
of 0.0222) on the test set. Overall, this algorithm had an
IoU average of 0.1267 on the test set, which is higher than
the baseline algorithm (see Table 1). I believe the mini
batch k-means algorithm is better than baseline thresholding
algorithm because it can handle varying levels of intensity
for cells, whereas thresholding depends on an intensity value
to identify cells.

5.3. Machine Learning Method 2 (CNN) Results

In order to determine the best hyperparameters for the CNN,
I tested on the dev set. Hyperparameters for a CNN include
the number of layers, which non-linearity to use, kernel
size, padding, and output channel size for the convolutional
layers. Because of the large number of possible hyperparam-

eters, I kept the number of layers and the number of output
channels constant (to prevent excessive runtime, which is
already exceeding 13 hours). I tested kernel sizes of 2 to 5,
results shown in Figure 9. Because of the results, I decided
to use a kernel size of 3, which is typical for many CNNs
(such as the original U-Net model) anyways.

The overall results for the CNN were mixed, similar to the
k-means results. Figure 12 shows an example of a visually
successful segmentation, however, its IoU score was very
low ( 0.06). This is because the algorithm selected the wrong
shapes for the cells, even though it picked the right location
for the cell to be in. Figure 13, on the other hand, shows a
poor segmentation mask with a higher IoU. The CNN chose
almost all of the background to be labeled as a cell, which
gave it a higher IoU score because of the sheer number of
cells in the image. It is clear that the glare in the image
caused the algorithm to select the entire background.

Figure 11. Original cell image (left) and correct mask (middle) from DeepSea’s test set (Abolfazl Zargari, 2023), and cells segmented by
sklearns’ mini batch k-means clustering algorithm (see 5.2 Machine Learning Methods 1).



Figure 12. Original cell image (left) and correct mask (middle) from DeepSea’s test set (Abolfazl Zargari, 2023), and cells segmented by
U-Net CNN algorithm (see 5.3 Machine Learning Method 2).

Table 1. Average IoU scores for baseline and mini batch k-means
algorithms on DeepSea’s dataset.

DATA SET BASELINE K-MEANS U-NET CNN

DEEPSEA 0.07982 0.1267 0.1160

While the CNN performed better than the baseline algorithm
on average, it performed worse than the k-means algorithm
(see Table 1). However, looking at the results manually,
I think that the CNN and k-means algorithms performed
very similarly. I think this is because while the baseline
algorithm just selects anything above a certain threshold
and therefore cannot discern between noise and cells, the
k-means and CNN are learning some amount of information
about the cells’ properties. Additionally, the CNN has made
some clear choices on what the cell shapes are like, where as
k-means and thresholding just picks the bright spots. I think
that the CNN didn’t perform as well as expected because it
wasn’t trained enough with a diverse enough dataset.

6. Discussion
The baseline algorithm has low IoU, particularly for images
with a low number of cells. The mini batch k-means clus-
tering algorithm a higher IoU than the baseline algorithm,
though it was still very low particularly because it had diffi-
culty with images with background noise (like a glow from
the phase contrast microscopy).

The mini batch k-means clustering just selected any bright
spots. For example, in Figure 10, the bright spot at around
(900, 300) is clearly glare to the human eye, but it is iden-
tified as a cell by the k-means clustering. This result was
expected for this algorithm, as it just grouping similar points
from the image together.

One way to improve this algorithm is to just use the regu-
lar/vanilla k-means, which will guarantee correct centroids
for the clusters, whereas the mini batch k-means could have
the wrong centroid because it is just picking a random subset
of the data to calculate it. Another way to improve the algo-
rithm is to include more preprocessing. If the background
noise is significantly decreased, the k-means clustering will
be less likely to pick out the noise as cells (like what hap-

Figure 13. Original cell image (left) and correct mask (middle) from DeepSea’s test set (Abolfazl Zargari, 2023), and cells segmented by
U-Net CNN algorithm (see 5.3 Machine Learning Method 2).



pened in Figure 11). This can be done with smoothing
filters or background subtraction. Mini batch k-means also
doesn’t always select the entire cell, since the cell’s borders
are brighter than the center. This can be remedied with the
watershed algorithm (see 2.1 Watershed Algorithm).

The U-Net CNN I developed had similar issues to the mini
batch k-means algorithm, especially with background noise.
Therefore, I think a similar fix (using the watershed algo-
rithm) would allow for less background noise and therefore
cleaner segmentation. Also, more preprocessing (such as
using some form of thresholding) could allow the glare in
the background, like in Figure 13, to be dealt with properly.

Overall, I think that this algorithm performed worse than
I expected, as I thought the CNN would be able to learn
features that the k-means wasn’t able to learn (like that the
cells are outlines and not circles, that there is glare in the
images, and the relative size of the cells); however, it seems
it wasn’t able to learn much. This could be because my
training dataset wasn’t diverse enough or large enough, or
that I didn’t have enough layers in my CNN.

7. Conclusion
Overall, the baseline method and mini batch k-means per-
formed poorly, due to their inability to adapt to diversities
in the datasets. The U-Net CNN also performed poorly on
images with high background noise because it wasn’t able
to learn what is a cell and what is not even though it had
extensive training. While it performed better than the base-
line thresholding method, I would still like to continue to
improve the CNN to be able to handle even more diversity
in the images.

Link to GitHub repo:

https://github.com/eschbachj/CSCI467FinalProject

Link to DeepSea Dataset:

https://deepseas.org/datasets/

Note: The DeepSea dataset has a lot of images, but not all
of them have a correct mask pair, so I only used the images
with a paired mask (so my training dataset was smaller than
what they provided).
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