League of Legends Match Win Classifier

Jonathan Ong

Abstract

League of Legends is internationally played game
with a huge player base and large betting mar-
ket. As result of this, it is of great interest to be
able to predict the outcome of League of Legends
matches before they are over as well as under-
stand the factors that contribute to the outcome of
a match. This project employs various binary clas-
sification techniques such as logistic regression,
neural networks, and random forests to predict
the outcome of a match given match data from
10 minutes into the game. Each model is trained
on a training set, tuned on a development set, and
finally evaluated with accuracy on a test set. Most
of the methods manage to improve slightly on a
baseline heuristic method, with random forests
and neural networks performing the best on the
test set.

1. Introduction
1.1. Overview of League of Legends

League of Legends of a team-based strategy game where
two teams of 5 players (a red team and a blue team), each
playing a different champion, work to destroy the other
teams base (lea, 2023). This is achieved by destroying
the enemy towers that defend the enemy’s base and finally
destroying the nexus at the center of the base. The players
on a team of 5 usually take 1 of 5 positions (top, jungle, mid,
bot, and support). Champions grow stronger for combat
by earning gold through killing other players and minions
and spending on this gold on items to gain combat stats.
Additionally, champions gain experience that causes them
to level up, allowing them to level up abilities and gain stats.
A typical game of League of Legends lasts about 30 minutes
with players being able to surrender as early as 15 minutes
into the game (Mahmood, 2023).

1.2. Task Definition and Motivation

The goal of this project is to predict the outcome of a League
of Legends match (which team wins) given a snapshot of
the game data 10 minutes into the match. Given data about
a match at 10 minutes (such as the champions on each

team, the amount of gold on each team, champion stats)
the model outputs the winning team. I chose this project
because I really enjoy playing League of Legends and think
it would be fun to apply machine learning techniques to
a topic I enjoy. Additionally, this could have applications
in providing insights into what metrics have the largest
influence in game outcomes and in betting markets on league
matches. It turns out that a baseline heuristic using the total
gold of each team is extremely effective in determining the
outcome of a match. Machine learning methods are only
able to slightly improve on the baseline, with random forests
models and neural networks performing the best.

2. Related Work

Past work in this field has been successful and generally
falls into two categories.

2.1. Personal Player Related Statistics Approach

Past work has tried to use information about the players in
the game to predict its outcome before it even starts after
all players have selected the champion they will play. For
example, Huang, Kim, and Leung found that each player’s
winrate on their chosen champion allowed for extremely
accurate predictions decision trees and bayesian neural net-
works (Huang et al., 2015). They were even able to achieve
an accuracy of 92.8% using the selected champion win-rates
of players on each team. On the other hand, Hall used neu-
ral networks with data on each of the player’s past ranked
games (not including win rate) (2017). Hall was able to
achieve an accuracy of 84.4% after some feature engineer-
ing. My project fundamentally differs from this approach
though in that it is trying to make predictions based off the
current state of the League of Legends match instead of the
past history of the players.

2.2. Game Related Data Approach

Much other work aims to predict the winner of a League of
Legends match with a snapshot of the state of the game at 10
minutes which is the approach that I take in this project. For
example, Lee was able to predict the outcome of a match us-
ing logistic regression with an accuracy of 72.75% and also
achieved an accuracy of 71.7% using a XGBoost Random
Forest model (2021). Lee’s results indicated that certain

features (such as early kills) had an extremely high impact
of the outcome of a match. Carroll was also able to achieve
similar results training a random forest and XGBoost on
game data from 10 minutes and discovered that a team’s
lead in gold was by far the largest factor in predicting a
win (followed by lead in experience) (2020). This supports
the use of the team with the lead in gold as a heuristic for
preliminary predictions. A common challenge in related
work is that League of Legends game data has features that
are unnecessary or highly correlated. This is something
I hope to address in my data preprocessing by removing
unnecessary features. Additionally, none of the previous
game data approaches to this task use neural networks and I
am hope to use neural networks to achieve similar results.

3. Dataset and Evaluation
3.1. Plan to Produce a Dataset

I have produced my own dataset using the Riot API (Riot is
the company that produces League of Legends). By mak-
ing requests to the API for match statistics (such as the
champions involved and outcome of the match) and for the
state of each player at 10 minutes (stats, total gold, total
experience, etc.), I have been able to extract 512 features
that describe the state of a match at 10 minutes from 19242
ranked matches. The two teams involved in a match are
labeled as team100 and team200 from the Riot API. The
classification task will be to predict if team100 wins. Out
of the 19242 matches, team100 wins on 9695 / 19242 =
50.2% of the matches. Since this is a rather sizable dataset,
I do not need to sample matches from times other than 10
minutes. Additionally, this dataset is large enough to be
split into a train, development, and test set. The dataset was
randomized and split into a train, development, and test set
with a 70:10:20 ratio each of size 13470, 1924, and 3848
respectively.

3.2. Plan for Model Evaluation

Using the test split, I will test the trained model using accu-
racy since this is a classification task. This is an appropriate
metric to use because there is not a large class imbalance
(team100 wins about half of the time).

3.3. Data Preprocessing

To preprocess the data, the label (team100Win) was sep-
arated out. Additionally, unimportant features such as
matchID, teamID, and championName were removed be-
cause they aren’t directly related to gameplay. The teamID
feature was removed because the player data is always pre-
sented in the same order within the input. So, the position
of player data within the input already encodes which team
the player is on. Additionally, both the championName

and championID features were removed. Originally, in the
midterm report, I one-hot encoded the championID feature
into 165 classes. But, this led to strong L1 regularization
being the best performing logistic regression model which
pushed the weights for a lot of features to zero (including all
of the one-hot encoded features). So, the one-hot encoded
features are not useful for the model and don’t needed to be
included in the features. The mean and standard deviation
of each feature was calculated and data is normalized to
have a mean of 0 and standard deviation of 1. After these
preprocessing steps, the input size now has 470 features
(down from the 2130 features used in the midterm report).

4. Methods

4.1. Baseline

The baseline model predicts the winner of a match based on
the heuristic that the team with the most gold at 10 minutes
will win. By identifying and hard-coding the locations in
the feature vector that contain the gold for each player of
a team, the baseline predicts that team100 wins if team100
has more total gold than team200. The input data for the
baseline method does not need to be normalized because it is
simply summing certain features. Total gold is a reasonable
metric for predicting wins because gold is used to purchase
items which directly influence combat stats. It would stand
to reason that the team with more gold would have an ad-
vantage in combat against other team, leading to the gold
lead increasing until the team in the lead wins. Additionally,
previous work shows that a gold lead is a powerful predictor
for the outcome of a League of Legends match.

4.2. Logistic Regression

To implement logistic regression, I use the
sklearn.LogisticRegression class. After preprocess-
ing inputs, I use this class to fit a Logistic Regression model
to the training data. This model takes a takes the dot product
between a weight vector and the input, adds a bias, then
takes sigmoid of this value to make a prediction (True or
False) whether Team100 wins or not. The hyperparameters
of this model include type of regularization (L1 vs L2)
and strength of regularization. I evaluate many different
versions of logistic regression including no regularization
and differing strengths of L2 or L1 regularization (chosen
from [0.01, 0.1, 0.5, 1, 1.5, 2]). I evaluate each model on
the development set and keep the model that performs best
on this.

4.3. Support Vector Machines (SVMs)

To implement support vector machines, I used the
sklearn.svm.SVC class. To map an input to a prediction, a
SVM takes the kernel of an input with all of the training

examples (which corresponds to a dot product in a different
feature space) and sums them. Then, it takes sigmoid of this
value to make a prediction (True of False) whether Team100
wins or not. The hyperparameters of this model include the
type of kernel, polynomial or radial basis function (RBF).
When working with a polynomial kernel, the degree of the
kernel (chosen from [1, 2, 3, 4, 5]) is also a hyperparameter.
When working with a RBF kernel, the strength of L2 regu-
larization (chosen from [0.01, 0.1, 0.5, 1, 1.5, 2]) is also a
hyperparameter. I evaluate the performance of each model
with its varying hyperparameters on the development set
and keep the model that performs best on this.

4.4. Neural Network

To implement logistic regression, I created a VariableLay-
erMLP class (a neural network with a variable number of
hidden layers) using PyTorch. When a tensor of features is
input into the model, a linear hidden layer is applied, the
ReLU activation function is applied, and a drop out layer
is applied. This process is repeated a set number of times
before it is then passed through a final linear output layer.
Sigmoid of the output layer then becomes the output of the
model. If the output is greater than or equal to 0.5, then
the model predicts that team100 wins. If it is less than 0.5,
then the model predicts that team100 loses. Since this is a
binary classification task, the loss function for the model
was binary cross entropy.

The hyperparameters of this model include the type of opti-
mizer (stochastic gradient descent or Adam), learning rate
(or learning rate scheduler), number of epochs, batch size,
number of hidden layers, size of each hidden layer, weight
decay, and drop out probability. The optimizer is the algo-
rithm used to update the parameters of the neural network.
The number of epochs controls the maximum number of
passes through the entire training data during training. The
batch size controls how many examples the model sees be-
fore it updates itself. The number and size of the hidden
layers controls the operations that the inputs are passed
through to be mapped to the output. Weight decay is a ver-
sion of L2 regularization that causes parameters to decay
by a certain percentage each update. Drop out probability
is the probability that a neurons are ignored in a specific
forward pass of the model. While in the midterm report I
only evaluated one version of the neural network with a set
of hyperparameters. Now, I conduct experiments on differ-
ent number of hidden layers, size of hidden layers, drop out
probability, batch size, weight decay, and learning rate.

4.5. Decision Trees

To implement a decision tree, 1 wused the
sklearn.treeDecisionTreeClassifier class. At its core,
a decision tree is a series of if-else statements. To map

an input to an output, an input is put through a series of
conditions based on single features. Once an input has
gone through a certain number of conditions (nodes in the
tree) and reaches a leaf node with no more conditions to be
compared, the input is classified with an output based on
the leaf node it landed at. A trained decision tree has all of
its conditionals and output labels at each leaf node defined
so an input simply needs to traverse the tree by checking
itself against the conditions and assign itself the output of
the leaf node it lands at.

Hyperparameters that control the training of a decision tree
include its max depth, splitting criterion, maximum features
to consider, and minimum impurity decrease. During train-
ing, a decision tree will create nodes that split the training
data based on a condition involving a single feature. Instead
of a traditional loss function, a decision tree uses an impu-
rity function (criterion) which is a measure of how bad a
leaf node is at classifying training examples. Some popular
are criterion are gini, entropy, and log_ loss. Left unchecked,
a decision tree can overfit very easily by continuously cre-
ating new conditions until it reaches 0 impurity, perfectly
classifying all of the training data. To avoid this, the max
depth hyperparameter stops the decision tree from becoming
too deep by limiting the number of conditions it can learn to
split the data. Additionally, the minimum impurity decrease
can prevent overfitting to the training data by only allow the
decision tree to create conditions that reduce the impurity
(as defined by the criterion) by at least a certain amount.
Limiting the number of features that a tree is allowed to
split can also reduce overfitting.

4.6. Random Forests

A random forest is many decision trees working together to
make predictions. To map an input to an output, an input is
passed to many decision trees. The outputs of all of these
decision trees are used in a majority vote system where the
most common output becomes the output of the random
forest.

A random forest uses many of the same hyperparameters as
decision trees such as max depth, splitting criterion, max
features, and minimum impurity decrease which all control
the base decision tree that makes up the random forest. Ad-
ditionally, to ensure that different decision trees are learned,
bootstrap sampling is used. The dataset for each decision
tree is generated by randomly sampling from the training
dataset with replacement to produce a new (slightly differ-
ent) dataset of the same size.

4.7. Improvements from Midterm Report

The final methods presented in the final report use a further
cleaned version of the data as inputs. This should make it
easier to train models and improve performance over the

Logistic Regression Accuracy on Dev Set

0.700

MNone LZ L2- L2- L2-1 LZ - oL2-2 L1 L1- L- L1
01 0.5 01 01 05

0.695

0.690

0.685

Figure 1. Accuracy of Logistic Regression with Different Regular-
ization

midterm report. Additionally, the final methods used such
as SVMs and random forests are much more powerful than
what was used in the midterm report. In particular, given
the success of the heuristic which only uses a few features,
random forests which only consider single features at a time
should perform very well.

5. Experiments
5.1. Baseline

The baseline model performs extremely well, achieving an
accuracy of 0.703. It predicts that 1853 / 3848 = 0.482 of
the matches are a win for team100. This is slightly off from
the team100 winning 0.502 matches on average.

5.2. Logistic Regression

All of the logistic regression methods performed very sim-
ilarly as can be seen in Figure 1. L2 regularization with a
strength of 0.01 had the highest accuracy on the develop-
ment set though and was chosen to represent the logistic
regression model approach. L2 regularization of 0.01 had an
accuracy of 0.706 on the test set which is an improvement
over the baseline.

5.3. Support Vector Machines (SVMs)

The results experiments with different kernels and regular-
izations for SVMs can be seen in Figure 2. A polynomial
kernel with degree 3 had the highest accuracy of the develop-
ment set and was chosen to represent the SVM approach. A
degree 3 polynomial kernel SVM had an accuracy of 0.707
on the test set which is slight improvement over logistic
regression.

SVM Accuracy on Dev Set
075

070

0.65
0.60
055 I I
0.50

Poly-1 Poly-2 Poly-3 Paoly-4 Poly-5 RBF- RBF- RBF- RBF-1 RBF REF-2
0.01 01 05

Figure 2. Accuracy of SVMs with Different Kernels and Regular-
ization

5.4. Neural Network

After finding a bug in the implementation of the neural net-
work model, I trained a model with the same hyperparam-
eters as the midterm report' but with a different optimizer.
This neural network had a highest development set accuracy
of 0.7074 on epoch 67 which is pretty good. But given the
success of the heuristic baseline model which only takes
into account a handful of features, I conducted further ex-
periments to see if similar performance could be achieved
with much smaller neural networks.

In testing different hidden layer sizes?, I discovered that a
hidden layer size of 2 and 4 achieved comparable develop-
ment set performance to the first model with a hidden layer
size of 200 (see Figure 3). This led to further experiments
with model architecture shown in table 1. A neural network
with 6 hidden layers of size 4 achieved the best development
accuracy.

This led to more experiments to tune drop out probabil-
ity, then learning rate, then weight decay, then batch size.
I tuned each of these individually and in order, keeping
all other hyperparameters that I wasn’t tuning constant to
avoid a huge grid search through all combinations of these
hyperparameters. The results of these experiments are sum-
marized in Table 2, Table 3, Table 4, and Figure 4.

Despite the slightly weaker performance of drop out prob-
ability 0.15, I decided to choose this to be the drop out
probability moving forward because I was worried about

!This was a neural network using 2 hidden layers of 200 neu-
rons. Dropout probability was 0.1 and weight decay was 0.001.
The learning rate was 0.01 and I used Adam as the optimizer in-
stead of stochastic gradient descent. The model was trained for
100 epochs with a batch size of 32.

2All hidden layer sizes were trained with 200 epochs except
hidden layer size 2 was trained with 400 epochs because it was
still improving at the 200th epoch.

Development Set Accuracy vs. Hidden Layer Size

0.705 0.7037

0.700

0.695

0.690

Figure 3. Accuracy of 2 layer neural network models on the devel-
opment sets with varying hidden layer sizes

Table 1. Model Architecture Experiment

Num Hidden Layers Hidden Size Dev Accuracy

2 0.6975
0.7037
0.4844
0.7027
0.5156
0.7048
0.4844
0.5156
0.5156
0.5156

0 XA B
AR AEADNDRDNDPRAED RN

—_—
je i)

Development Set Accuracy vs. Dropout Probability

0710
0.7069

L
0705

0.700

Dev Accuracy

0.695

0.680
0.08 010 018 0.20

Dropout Prob

Figure 4. Accuracy of a neural network with 6 layers of 4 neurons
with varying dropout probabilities

Table 2. Learning Rate Experiment

Learning Rate Dev Accuracy

0.01 0.5156
0.001 0.6960
0.0001 0.7027
1.00E-05 0.7032
1.00E-06 0.4844
1.00E-05 0.7032
2.00E-05 0.7053
3.00E-05 0.7053
4.00E-05 0.7048
5.00E-05 0.7022

Table 3. Weight Decay Experiment

Weight Decay Dev Accuracy

0.1 0.5156

0.01 0.5156
0.003 0.5156
0.005 0.5156
0.008 0.5156
0.001 0.7053
0.0001 0.7017

overfitting and it didn’t have a large effect on the devel-
opment accuracy when compared with smaller drop out
probabilities. To break the tie between 2.00E-05 and 3.00E-
05 learning rate, I chose 2.00E-05 for more stable training.

The final hyperparameters for the neural network has the
following hyperparameters:

* 6 hidden layers of size 4 each
e drop out =0.15

¢ learning rate = 2.00E-05

* weight decay = 0.001

e batch size = 32

Table 4. Batch Size Experiment

Batch Size Dev Acccuracy

16 0.7053
32 0.7084
64 0.7074

128 0.6939

Table 5. Decision Tree Max Depth Experiment

Max Depth Dev Acccuracy Train Accuracy

2 0.5894 0.6066
4 0.6201 0.6530
5 0.6279 0.6694
6 0.6159 0.6907
7 0.6081 0.7205
8 0.6034 0.7601
16 0.5894 0.9812
32 0.5697 1

64 0.5697 1

128 0.5697 1

256 0.5697 1

This model achieved a development set accuracy of 0.708
which is better than the original neural network model with
much fewer parameters. The accuracy of the model on the
test set is 0.7102 which which is an improvement over the
SVM.

5.5. Decision Trees

The success of extremely small neural network models (as
well as the great success of a simple baseline heuristic)
suggest that there are a few features that are very powerful
predictors for the winner of a League of Legends match. So,
it is expected that decision tree models which make simple
decisions based on single features will have a perform well
on this task.

After trying many different values for the max depth (see
Table 5), and then running an experiment on different com-
binations of criterion and max features (see Table 6), a
decision tree with a max depth of 5, gini criterion, and no
max features performs the best on the development set with
a development set accuracy of 0.628. I further improved this
by experimenting with different values for the minimum im-
purity decrease (see Table 7). The best value for minimum
decrease was 0.001 with a development accuracy of 0.632.
This decision tree achieves an accuracy of 0.632 on the test
set which is significantly under the baseline and even the
neural network model. Despite this, what the decision tree
learns generalizes well because there isn’t a drop in accuracy
between the development set and the test set.

5.6. Random Forests

Initially, similar experiments to the decision tree experi-
ments were conducted for the random forest to determine
its underlying decision tree. A max depth of 8 (see Table
8) achieves the highest development accuracy but seems
to be overfitting on the training data, achieving a training

Table 6. Decision Tree Hyperparameters Experiment

Criterion Max Features Dev Acc. Train Acc.
gini sqrt 0.6066 0.6347
gini log2 0.5858 0.6226
gini None 0.6279 0.6694

entropy sqrt 0.6045 0.6301
entropy log2 0.5847 0.6210
entropy None 0.6273 0.6693
log_loss sqrt 0.6048 0.6301
log_loss log2 0.5847 0.6210
log_loss None 0.6273 0.6693

Table 7. Decision Tree Min Impurity Experiment

Min Impurity Decrease

Dev Accuracy

Train Accuracy

0 0.6278586279 0.6694135115
1.00E-06 0.6278586279 0.6694135115
1.00E-04 0.6278586279 0.6694135115
1.00E-03 0.632016632 0.6590200445
1.00E-02 0.5899168399 0.588047513
1.00E-01 0.5155925156 0.5032665182

accuracy nearly 20% greater than the development accuracy.
A max depth of 5 has the second highest development ac-
curacy, but seems to be slightly overfitting on the training
data. A max depth of 4 was chosen because it has a very
similar development accuracy to the max depth of 5, with-
out overfitting as much on the training data. Both entropy
criterion wtih sqrt max features and log_loss criterion with
sqrt max features had the highest development accuracy. For
future experiments, I arbitrarily decided to use the entropy
criterion with sqrt max features. Additionally, a minimum
purity decrease of 0.0001 had the highest accuracy on the
development set.

Finally I ran experiments on the number of estimators used
for the random forest (see Table 9). I found that 200 random
estimators had the best development accuracy. So after all
the experiments, a random forest model with a max depth of
4, entropy criterion, sqrt max features, minimum impurity
decrease 0.0001, and 200 random estimators was chosen
to be the representative random forest model. This model
achieved a test accuracy of 0.7105 which is the best model
discovered, slightly outperforming the neural network.

Table 8. Random Forest Max Depth Experiment

Max Depth Dev Acccuracy Train Accuracy

1

Co 1 O\ Lt A W

12
14
16
32
64
128
256

0.6856
0.6861
0.6913
0.6960
0.6970
0.6975
0.6840
0.6975
0.6939
0.6757
0.6913
0.6850
0.6840
0.6772
0.6772
0.6772

0.6844
0.6950
0.7033
0.7223
0.7417
0.7721
0.8100
0.8602
0.9500
0.9918
0.9990
1

—_

Table 9. Random Forest Num Estimators Experiment

Max Depth Dev Acccuracy Train Accuracy

1
5
10
20
50
100
150
175
200
225
250
275
300
400
500
600

0.5936
0.6419
0.6663
0.6793
0.6897
0.6970
0.6954
0.6985
0.7027
0.7006
0.7011
0.7027
0.6980
0.6975
0.6991
0.6928

0.6062
0.6670
0.6828
0.7038
0.7161
0.7240
0.7254
0.7247
0.7251
0.7257
0.7252
0.7250
0.7269
0.7269
0.7270
0.7270

1300

1200

team100 Loss

1100

1000

9200

True label

800

team100 Win
700

600

T
team100 Loss team100 Win
Predicted label

Figure 5. Confusion matrix for the random forest model on the test
set

6. Discussion

6.1. Analysis of Performance and Improvement From
Midterm Report

For logistic regression, L2 regularization doing better than
L1 regularization is an indication that they remaining input
features for the model are useful for the model. It still
seems like out the few remaining features, a few dominate
with as predictors for the output though. This can be seen
in the success of very shallow decision trees used in the
most successful machine learning method, random forests.
Surprisingly, a random forest using just 4 deep decision trees
achieves the best performance on the data, indicating that
only a few features are needed to make accurate predictions.
This explains the poor performance of a normal decision
tree because many of the other features would have be noise
that made it easy to overfit on the training data, and harder
to produce a generalizing model. Random forests took the
idea that a few features could be used to make accurate
predictions, but addressed the overfitting issues of decision
trees by averaging the predictions of many decision trees.

6.2. Error Analysis

Overall the random forest model is very balanced in its
predictions as can be seen in a relatively equal rate of false
positives to false negatives as can be seen in Figure 5.

Out of the top 10 features used for splits in the estimators
of the random forest model, the top 8 were total gold for
different players. This indicates that the the random forest
model relied heavily on the total gold features to make its
predictions.

To test the random forest model’s reliance on the total gold
feature, I created a new dataset which was the subset of

400

team100 Loss
350

300

True label

250

team100 Win - 200

150

T
team100 Loss

team100 Win
Predicted label

Figure 6. Confusion matrix for the random forest model on a subset
of the test set where the total gold heuristic fails

the testing data that the heuristic approach incorrectly clas-
sified. This dataset consisted of matches where team100
had more total gold and lost or team100 had less total gold
and won. The random forest model still had fairly balanced
predictions as can be seem in Figure 6, but has a terrible
accuracy of 23.9%. Evidently the model has learned to rely
very heavily on the total gold features and performs very
poorly when total gold isn’t an accurate predictor of the
winning team. It could be the case that there is an element
of randomness in League of Legends matches and that be-
yond total gold, there are not many good predictors of the
outcome of a match.

7. Conclusion

Overall, I found that total gold is a key factor in determining
the outcome of a League of Legends match. In fact, total
gold is such a strong predictor of the winner that machine
learning models learn to rely on it heavily to make their
predictions and achieve accuracies comparable to a sim-
ple heuristic based off total gold. One of the biggest (and
most surprising) takeaways I have from this project is that
sometimes simple heuristics are effective.

I learned a lot about the importance of data preprocessing.
Before I preprocessed my data by removing unneccessary
features, I wasn’t able to train a SVM in reasonable time
because the data was too noisy to fit a model to. After
I updated my data, I was able to train SVMs and neural
networks to achieve respectable accuracies.

Additionally, I have learned a lot about debugging neural net-
works in Pytorch and the importance of sanity checks such
as fitting your model to a small training set. Debugging my
neural network model on a small training set that it wouldn’t

fit enabled me to discover a bug in my implementation.

I also got a sense of how easy it is to overfit on data and
learned how important it is to take measures to watch for
overfitting such as tracking training loss or accuracy in
comparison with development loss. In particular, it amazed
me how quickly decision trees overfit, with even a 6 or 7
layer decision overfitting to the training set to the point of
hurting development accuracy.

8. Code and Data Submission

The code and dataset for this project are available at this
Google Drive folder. To run the code for this project, run
the cells in Models.ipynb. Run the ”Set Up” and “Data
Preprocessing” sections before running any of the other
sections. The %cd command in the very first ”Set Up” cell
may need to be changed to reference location of the data
folder in your drive. All of the data used can be found in the
data folder. Raw data from experiments can be found in the
Final Documentation folder.

References

How to play - league of legends, 2023. URL https:
//www.leagueoflegends.com/en-us/how—-t
o-play/.

Carrol, T. Predicting the winner of league of legends games.
Medium, 2020. URL https://medium.com/ana
lytics-vidhya/predicting-the-winner-o
f-league-of-legends—games-c6fb3513b3d
4.

Hall, K. T. Lol-match-prediction. 2017. URL https:
//minihat.github.io/LoL-Match-Predict
ion/.

Huang, T., Leung, G., and Kim, D. League of legends win
predictor, 2015. URL https://thomasythuang.
github.io/League-Predictor/.

Lee, J. Using machine learning to understand league of
legends. Towards Data Science, 2021. URL https:
//towardsdatascience.com/the-path-t
o-a-victorious—-league-of-legends-mat
ch-40d51ala089%e.

Mahmood, R. How long is an average match in league of
legends 2023. 2023. URL https://gameriv.com/
how-long-is—-an-average-match-in-lea
gue—-of-legends/#average-match-time-f
or—-summoner8217s-rift.

https://drive.google.com/drive/folders/1rWpLNVIwIvtD0DrTFb8sQZG2KmUU8UTh?usp=sharing
https://drive.google.com/drive/folders/1rWpLNVIwIvtD0DrTFb8sQZG2KmUU8UTh?usp=sharing
https://www.leagueoflegends.com/en-us/how-to-play/
https://www.leagueoflegends.com/en-us/how-to-play/
https://www.leagueoflegends.com/en-us/how-to-play/
https://medium.com/analytics-vidhya/predicting-the-winner-of-league-of-legends-games-c6fb3513b3d4
https://medium.com/analytics-vidhya/predicting-the-winner-of-league-of-legends-games-c6fb3513b3d4
https://medium.com/analytics-vidhya/predicting-the-winner-of-league-of-legends-games-c6fb3513b3d4
https://medium.com/analytics-vidhya/predicting-the-winner-of-league-of-legends-games-c6fb3513b3d4
https://minihat.github.io/LoL-Match-Prediction/
https://minihat.github.io/LoL-Match-Prediction/
https://minihat.github.io/LoL-Match-Prediction/
https://thomasythuang.github.io/League-Predictor/
https://thomasythuang.github.io/League-Predictor/
https://towardsdatascience.com/the-path-to-a-victorious-league-of-legends-match-40d51a1a089e
https://towardsdatascience.com/the-path-to-a-victorious-league-of-legends-match-40d51a1a089e
https://towardsdatascience.com/the-path-to-a-victorious-league-of-legends-match-40d51a1a089e
https://towardsdatascience.com/the-path-to-a-victorious-league-of-legends-match-40d51a1a089e
https://gameriv.com/how-long-is-an-average-match-in-league-of-legends/#average-match-time-for-summoner8217s-rift
https://gameriv.com/how-long-is-an-average-match-in-league-of-legends/#average-match-time-for-summoner8217s-rift
https://gameriv.com/how-long-is-an-average-match-in-league-of-legends/#average-match-time-for-summoner8217s-rift
https://gameriv.com/how-long-is-an-average-match-in-league-of-legends/#average-match-time-for-summoner8217s-rift

