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Bias in NLP: Downstream Task

* Coreference resolution is biased!-
* Model fails for “she” when given same context
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* ELLMo is sensitive to gender
* Training corpus is biased
* ELMo treats genders unequally
* Bias propagates to downstream tasks

In this work, the analysis 1s in English.
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Background: |

H1.Mo

* Make use of a pretrained language model

* Embed corresponding context into the representations

He taught himself to play the violin . Do you enjoy the play ?

Embedding

visualization

\—Y—J
from from
context-1 context-2

word2vec

EILLMo 5



Bias in EI.LMo

UCLA

. Training Dataset Bias

e Dataset 1s biased towards man

Gender Male Female

Pronouns Pronouns
Occurrence 5,300 1,600
(*1000)

* Male pronouns (he, him, his) occur 3 times more often
than females’ (she, her)

0



UCLA ININ=)

Bias in EL.LMo (continued)

* Male pronouns co-occur more frequently with
occupation words!
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Zhao et al. Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. NAACL 2018
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Bias in EL.LMo (continued)

* Male pronouns co-occur more frequently with
occupation words!

- B Male Pronoun
" Female Pronoun

Training Corpus is Biased

Y

180

45

# co-occurre

M-Biased Occupations F-Biased Occupations

Zhao et al. Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. NAACL 2018
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Gender Geometry in ELLMo

* First two components explain more variance than others

(Feminine) The |driver|stopped the car at the hospital because she was paid to do so

(Masculine) The|driver] stopped the car at the hospital because he was paid to do so

gender direction: ELMo(driver) — ELMo(driver)

o
w
o

Explained Variance(%o)
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Gender Geometry in E1.LMo

© The driver stopped the car at the hospital because she was paid to do so

@ The drive stopped the car at the hospital because he was paid to do so
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Gender Geometry in E1.LMo

VY NLP

© The driver stopped the car at the hospital because she was paid to do so

@ The drive stopped the car at the hospital because he was paid to do so

Occupational Gender
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Unequal Treatment of Gender

e Classifier

f . BLMo(occupation) —» context gender :
ELMo f gender
embeddings prediction

| I

The driver stopped the car at the hospital because she was paid
to do so
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Unequal Treatment of Gender (continued)

* ELMo propagates gender information from the context

* Male information i1s 14% more accurately propagated than
female
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Unequal Treatment of Gender (continued)

* ELMo propagates gender information from the context

* Male information i1s 14% more accurately propagated than
female
100

=
ELLMo embeddings are biased

Accurac

70
60
50

Male Context Female Context
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Bias in Downstream Task: Coreference
Resolution in English

* WinoBias dataset!

. Pro—Steit‘ypical (Pro.) and Anti—Stere;)typical (Ant1.)

/
/

[he physman hired the secretary becayse|he|was overwhelmed with clients.

* Bias: performance difference between Pro. and Anti. dataset.

Thttps://uclanlp.github.io /corefBias 15
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Bias in Coreference

* ELMo boosts the performance
* However, enlarge the bias (A)

B OntoNotes | Pro. ~ Anti.
80 —

GloVe + ELMo 16
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Bias in Coreference

* ELMo boosts the performance
* However, enlarge the bias (A)

B OntoNotes | Pro. Anti.
80 —

I N
EI.Mo enhances bias

in downstream tasks

40

GloVe + ELMo 18
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UCLA

* Mitigation Bias
* Gender swapping

* Data augmentation
* Neutralizing ELMo

20
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Mitigate Bias

* Gender Swapping!

The doctof went to the store to pick up food.

At the store, there was a sick cashiet. he

The doctori offered to helped the cashier because

could see something was wrong.

IZhao et al. Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. NAACL 2018
21
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Mitigate Bias (Method 1)

* Data Augmentation
* Generate gender swapped training variants
* Re-train on the union dataset
* Almost mitigate all the bias shown in WinoBias

B OntoNotes [ Pro. | Anti.
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Mitigate Bias (Method 1)

* Data Augmentation
* Generate gender swapped training variants
* Re-train on the union dataset
* Almost mitigate all the bias shown in WinoBias

Data augmentation is effective.
What if we don’t want to retrain?

O
N—"
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Mitigate Bias (Method 2)

* Neutralize ELLMo Embeddings
* Average the ELLMo embeddings for test dataset

The driver stopped the car at the hospital because she was paid to do so

l gender swapping
The driver stopped the car at the hospital because he was paid to do so
. B B B B B B B B B B B B B B

average
B N N B N B B B N B B B B

24



UCLA NI
Mitigate Bias (Method 2)

* Neutralize ELMo Embeddings

* Lightweight; keeps the performance
* Mitigate some of the bias

I OntoNotes

. Pro. | Anti.

F1 (%)

without neutralizing with neutralizing

25
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Mitigate Bias (Method 2)

* Neutralize ELLMo Embeddings

* Lightweight; keeps the performance
* Mitigate some of the bias

Lightweight but can
also mitigate some bias

40

Fr (9

20

0

without neutralizing with neutralizing
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Conclusion
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* ELLMo is sensitive to gender
* Training corpus is biased to man
* ELMo treats genders unequally
* Bias propagates to downstream tasks

* Mitigation Bias
* Data augmentation
* Neutralizing ELMo

27
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